Course Type	Course Code	Name of Course	L	Т	P	Credit
DC	NCHC508	Advanced Mass Transfer	3	1	0	4

Course Objective

• To extend the fundamental concepts of mass transfer in cases of multi-component systems (with and without chemical reactions) and the application of those concepts in solving real engineering problems.

Learning Outcomes

 Students shall have adequate knowledge in tackling engineering problems with complex mass transfer operations.

Unit No.	Description of Lectures	Class Hours	Learning Outcomes	
1.	Review: VLE and VLLE of binary system, Introduction to Multi-phase equilibrium, ternary diagram, residual curve, ideal solution of multi-components	3 L + 1 T	Student will learn the basics of vapor-liquid equilibrium.	
2.	Thermodynamic correlation: Multi-phase equilibrium, K-value and activity coefficient	3 L+1 T	Student will learn the basic of thermodynamic relations.	
3.	Multi-component diffusion and convection: Multi-component diffusion, convective mass transfer, correlations for mass transfer coefficients, review of the models for mass transfer at fluid—fluid interface.	6 L + 2 T	Student will learn fundamental concepts of diffusion and convection especially for multi- component system.	
4.	MESH equations: Formulation of Material and Energy balance equation (MESH) for single stage operation, batch distillation, flash vaporization, degrees of freedom (DOF)	6 L + 2 T	Student will learn mathematical concept of single stage mass transfer operation.	
5.	Short-cut methods: Short-cut methods for designing multi- component multi-stage fractionation: Kremser equation, Fenske-Underwood-Gilliland, Wang-Henke, Naphtali- Sandholm, Thiele-Geddes	3 L + 1 T	Student will learn the different easy mathematical method for designing of distillation unit.	
6.	Rigorous methods: Rigorous method of multi-component multi-stage fractionation: MESH Equations for multi-stage fractionation, DOF, Solution technique	6 L + 2 T	Student will learn the rigorous method for designing of distillation unit.	
7.	Multicomponent distillation: Multi-component distillation and cascading of columns, divided-wall distillation columns	6 L + 2 T	Student will learn operation techniques of distillation unit for multicomponent system.	

8.	Reactive mass transfer: Introduction to reactive distillation (RD) process, advantages and disadvantages of RD, design of RD columns. Mass transfer: Gas liquid reactions: solutions for slow, fast and instantaneous reactions with adsorption for single and two gases.	6 L + 2 T	Student will learn the reactive distillation process.
9.	Supercritical Fluid Extraction: Supercritical fluid extraction	3 L + 1 T	Student will learn the supercritical fluid extract phenomena.
	Total	56	

Textbooks:

- 1. Treybal, R.E. (1981). Mass Transfer operations, 3rd Ed. McGraw Hill Publication.
- 2. Seader, J. D., Henley, E. J., & Roper, D. K. (1998). Separation Process Principles. John Wiley & Sons.

Reference Books:

- 1. Taylor, R., & Krishna, R. (1993). Multicomponent mass transfer. John Wiley & Sons.
- 2. Doraiswamy, L.K. & Sharma, M.M (1984) Heterogeneous reaction: analysis, examples and reactor design vol2, Fluid-fluid Solid reaction, Wiley.
- 3. Kulprathipanja, S. (2002). Reactive separation processes. Taylor & Francis: New York.